Skip to main content

Table 4 Statistical analysis of nuclear classification performance with 95% confidence intervals on TCGA-based Cell Classification Dataset

From: Instance-level semantic segmentation of nuclei based on multimodal structure encoding

Method

\(F_{\text {c}\_\text {avg}}\)

\(F_{\text {immune}}\)

\(F_{\text {stroma}}\)

\(F_{\text {tumor}}\)

HoVer-Net [53]

0.821 (0.814, 0.828)

0.785 (0.778, 0.792)

0.838 (0.831, 0.845)

0.840 (0.833, 0.847)

Mask2former [54]

0.835 (0.828, 0.842)

0.798 (0.791, 0.805)

0.852 (0.845, 0.859)

0.855 (0.848, 0.862)

UNet++ [57]

0.808 (0.801, 0.815)

0.772 (0.765, 0.779)

0.825 (0.818, 0.832)

0.827 (0.820, 0.834)

Triple U-net [55]

0.808 (0.801, 0.815)

0.772 (0.765, 0.779)

0.825 (0.818, 0.832)

0.827 (0.820, 0.834)

DeepLabV3 [58]

0.810 (0.803, 0.817)

0.780 (0.773, 0.787)

0.830 (0.823, 0.837)

0.835 (0.828, 0.842)

TSFD-net [56]

0.815 (0.808, 0.822)

0.779 (0.772, 0.786)

0.832 (0.825, 0.839)

0.834 (0.827, 0.841)

PSPNet [59]

0.806 (0.799, 0.813)

0.775 (0.768, 0.782)

0.818 (0.811, 0.825)

0.820 (0.813, 0.827)

SegNet [60]

0.799 (0.792, 0.806)

0.760 (0.753, 0.767)

0.811 (0.804, 0.818)

0.815 (0.808, 0.822)

Ours

0.858 (0.851, 0.865)

0.822 (0.815, 0.829)

0.875 (0.868, 0.882)

0.877 (0.870, 0.884)

  1. Values are presented as: mean (95% confidence interval)