From: Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity
Method | LBA30 | LBA60 | ||||
---|---|---|---|---|---|---|
RMSE \(\downarrow\) | Pearson \(\uparrow\) | Spearman \(\uparrow\) | RMSE \(\downarrow\) | Pearson \(\uparrow\) | Spearman \(\uparrow\) | |
DeepDTA [34] | 1.866 | 0.472 | 0.471 | 1.762 | 0.666 | 0.663 |
TAPE [35] | 1.890 | 0.338 | 0.286 | 1.633 | 0.568 | 0.571 |
ProtTrans [36] | 1.544 | 0.438 | 0.434 | 1.641 | 0.595 | 0.588 |
Atom3D-CNN [33] | 1.416 | 0.550 | 0.553 | 1.621 | 0.608 | 0.615 |
Atom3D-ENN [33] | 1.568 | 0.389 | 0.408 | 1.620 | 0.623 | 0.633 |
Atom3D-GNN [33] | 1.601 | 0.545 | 0.533 | 1.408 | 0.743 | 0.743 |
Holoprot [37] | 1.464 | 0.509 | 0.500 | 1.365 | 0.749 | 0.742 |
ProNet [38] | 1.463 | 0.551 | 0.551 | 1.343 | 0.765 | 0.761 |
DeepAffinity [39] | 1.893 | 0.415 | 0.426 | – | – | – |
SMT-DTA [40] | 1.574 | 0.458 | 0.447 | 1.347 | 0.758 | 0.754 |
GeoSSL [41] | 1.451 | 0.577 | 0.572 | – | – | – |
Uni-Mol [27] | 1.434 | 0.565 | 0.540 | 1.357 | 0.753 | 0.750 |
BindNet [28] | 1.340 | 0.632 | 0.620 | 1.230 | 0.793 | 0.788 |
SableBind | 1.527 | 0.579 | 0.579 | 1.246 | 0.802 | 0.798 |
Cross-Validation | 1.581 | 0.616 | 0.620 | 1.562 | 0.630 | 0.632 |