Skip to main content

Table 2 List of notation

From: A Dirichlet-multinomial mixed model for determining differential abundance of mutational signatures

Matrix factorisation

Data

N

Number of samples or observations (input of NMF)

K

Number of signatures

F

Number of mutational categories or features

\(\textbf{V}\)

(\(F \times N\)) Count matrix of categorised mutations

Parameters

\(\textbf{Y}^{*}\)

(\(K \times N\)) Matrix of exposures. For the sections below, \(\textbf{Y}=\textbf{Y}^{*\top }\)

\(\textbf{S}\)

(\(F \times K\)) matrix of signature definitions

Indices

f

Index for features (mutational types such as ACA\(\rightarrow\)ATA, for instance)

Models of differential abundance

Data

N

Number of observations with \(N\ge N_s\)

\(N_s\)

Number of patients, equivalent to the number of samples

K

Number of categories/signatures

P

Number of fixed effect covariates

Q

Number of precision covariates

\(\textbf{X}\)

(\(N \times P\)) covariate matrix with P=2 in our case, without loss of generality

\(\textbf{Z}\)

(\(N \times N_s\)) boolean matrix for random intercepts

\(\textbf{D}\)

(\(N \times Q\)) precision covariate matrix with \(\textbf{D}=\textbf{X}\) in our case

\(\textbf{Y}\)

(\(N \times K\)) response matrix of exposures

\(T_j\)

Mutational toll of observation j. \(T_j=\sum _{k'}Y_{jk'}\)

\(M_i^{(1)}\), \(M_i^{(2)}\)

(\(T_i^{(1)} \times 1\)) sequence of mutations of each observation of patient i

Parameters

\(\varvec{\beta }\)

(\(P \times (K-1)\)) Matrix of coefficients for fixed effects

\(\mathbf {\Sigma _{\varvec{\beta }_p}}\)

(\((K-1) \times (K-1)\)) covariance matrix of the pth row of \(\varvec{\beta }\)

\(\textbf{U}\)

(\(N_s \times (K-1)\)) matrix of coefficients for random effects

\(\mathbf {\Sigma }\)

(\((K-1) \times (K-1)\)) random effect covariance matrix

\(\varvec{\lambda }\)

(\(Q \times 1\)) vector of precision parameters

Indices

i

Index for patients

j

Index for observations (patient and group combinations)

p

Index for covariates

\(k'\)

Index for signatures/categories

k

Index for signatures/categories (log-ratio, or the first \(K-1\))

l

Index for mutations in an observation

Random variables

\(\varvec{\alpha }\)

Parameter for the Dirichlet or Dirichlet-multinomial

\(\bar{\varvec{\alpha }}\)

Parameter for the Dirichlet or Dirichlet-multinomial (compositional)

Other notation

 

\(\mathbf {0_K}\)

Vector of zeros of length K

 

\(\textbf{Y}, \mathbf {y_j}, {y_{jk}}\)

Notation for matrices, vectors and scalars.

 

P, p

Dimensions, indices

Simulations

\(\pi\)

For simulations C1-3, mixing proportion. Lower values indicate no mixing (no differential abundance).