Skip to main content

Table 5 Average metrics with standard deviations across 100 iterations for each drug repurposing data set

From: Joint embedding–classifier learning for interpretable collaborative filtering

  

AUC

NS-AUC

NDCG

Gottlieb

Fast.ai

0.90± 0.0

0.50± 0.1

0.01± 0.0

HAN

0.93± 0.0

0.67± 0.0

0.02± 0.0

NIM

0.90± 0.0

0.51± 0.0

0.01± 0.0

JELI

0.90± 0.0

0.52± 0.0

0.02± 0.0

LRSSL

Fast.ai

0.90± 0.0

0.49± 0.1

0.01± 0.0

HAN

0.95± 0.0

0.69± 0.0

0.10± 0.0

NIM

0.91± 0.0

0.53± 0.0

0.01± 0.0

JELI

0.92± 0.0

0.51± 0.0

0.02± 0.0

PRED-G

Fast.ai

0.90± 0.0

0.50± 0.1

0.01± 0.0

HAN

0.93± 0.0

0.68± 0.0

0.01± 0.0

NIM

0.91± 0.0

0.49± 0.0

0.01± 0.0

JELI

0.90± 0.0

0.47± 0.0

0.02± 0.0

TRANSC

Fast.ai

0.61± 0.1

0.57± 0.1

0.04± 0.0

HAN

0.93± 0.0

0.61± 0.0

0.08± 0.0

NIM

0.92± 0.0

0.57± 0.0

0.04± 0.0

JELI

0.92± 0.0

0.56± 0.0

0.02± 0.0

  1. The NDCG at rank \(n_i\) is averaged across users. NIM is the algorithm NIMCGCN, TRANSC refers to the data set TRANSCRIPT, and PRED-G to the data set PREDICT-Gottlieb