Skip to main content

Table 2 Classification accuracies of comparison methods on Dataset 1

From: Adaptive deep feature representation learning for cross-subject EEG decoding

Tasks

Comparison Methods

EEG_ConvNet

SA

TCA

TJM

DDC

D_CORAL

ADFR

aa/al

0.8964

0.9000

0.9107

0.9179

0.9179

0.9214

0.9393

aa/av

0.5107

0.5250

0.5321

0.5571

0.5679

0.5714

0.6107

aa/aw

0.7929

0.8071

0.8179

0.8321

0.8964

0.9000

0.9143

aa/ay

0.6036

0.6179

0.6393

0.6429

0.7679

0.7750

0.8179

al/aa

0.5893

0.6964

0.7179

0.7250

0.8321

0.8464

0.8643

al/av

0.5500

0.5964

0.6107

0.6071

0.6071

0.6107

0.6393

al/aw

0.7714

0.8393

0.8571

0.8643

0.9143

0.9036

0.9500

al/ay

0.7821

0.8464

0.8607

0.8536

0.8643

0.8714

0.8964

av/aa

0.6321

0.6321

0.6214

0.6393

0.6857

0.6607

0.7000

av/al

0.5964

0.6250

0.6500

0.6607

0.6679

0.6750

0.7071

av/aw

0.5250

0.5286

0.5964

0.6107

0.6857

0.7071

0.7429

av/ay

0.5536

0.5893

0.6321

0.6571

0.6750

0.6679

0.7000

aw/aa

0.6357

0.6393

0.7000

0.7071

0.7179

0.7429

0.7750

aw/al

0.8714

0.8929

0.8893

0.8964

0.8964

0.9071

0.9179

aw/av

0.5286

0.5286

0.5464

0.5500

0.5536

0.5857

0.6321

aw/ay

0.6393

0.7143

0.7786

0.7857

0.7964

0.8143

0.8357

ay/aa

0.5107

0.5143

0.5393

0.5429

0.5464

0.5536

0.5857

ay/al

0.6857

0.7607

0.7821

0.7964

0.8679

0.8893

0.9071

ay/av

0.5071

0.5714

0.5786

0.5857

0.5714

0.5893

0.6179

ay/aw

0.5107

0.5679

0.5714

0.5897

0.6500

0.6750

0.7143

Avg.

0.6346

0.6696

0.6916

0.7011

0.7341

0.7434

0.7734

  1. Bold values indicate statistically significant results (p < 0.05)