Skip to main content

Table 1 Annotation prediction performance using various branches of data from the GO database. GO branches used includes biological process, cell component, molecular function, and gene ontology. Performance was measured using Pairwise F-score (Fp), BCubed F-score (Fb), and Normalized Mutual Information (NMI). The CliXo, GCN-V, and GCN-V + E models served as baseline measurements and the proposed model, MPGNN-HiLander, resulted in the highest accuracy across all metrics and datasets

From: A graph neural network approach for hierarchical mapping of breast cancer protein communities

Method

Biological process

Cell component

Molecular function

Gene ontology

Fp

Fb

NMI

Fp

Fb

NMI

Fp

Fb

NMI

Fp

Fb

NMI

CliXO

0.08

0.15

0.51

0.05

0.09

0.49

0.06

0.13

0.59

0.11

0.13

0.57

GCN-V

0.24

0.31

0.66

0.27

0.29

0.69

0.24

0.35

0.60

0.23

0.26

0.59

GCN-V + E

0.24

0.32

0.67

0.31

0.29

0.68

0.28

0.34

0.62

0.24

0.31

0.60

MPGNN-HiLander

0.52

0.50

0.71

0.57

0.59

0.77

0.60

0.55

0.69

0.54

0.56

0.67