Skip to main content

Table 3 Performance of different methods on different data sets in terms of FDR (top) and TDR (bottom) with nominal level is \(\alpha =0.2\). Mean values and standard deviations (in parentheses) over 100 subsampled data sets

From: Conformal novelty detection for multiple metabolic networks

  

DD

PROTEINS

AIDS

NCI1

  

FDR

GIN

AdaDetect

0.05 (0.10)

0.04 (0.12)

0.10 (0.10)

0.04 (0.11)

 

CAD

0.04 (0.11)

0.05 (0.13)

0.19 (0.08)

0.04 (0.10)

DiffPool

AdaDetect

0.02 (0.05)

0.01 (0.05)

0.06 (0.08)

0.00 (0.01)

 

CAD

0.00 (0.02)

0.03 (0.13)

0.04 (0.08)

0.00 (0.00)

DGCNN

AdaDetect

0.11 (0.12)

0.08 (0.12)

0.19 (0.07)

0.03 (0.08)

 

CAD

0.03 (0.09)

0.04 (0.12)

0.10 (0.10)

0.03 (0.11)

WL

AdaDetect

0.10 (0.12)

0.08 (0.12)

0.19 (0.06)

0.06 (0.11)

 

CAD

0.08 (0.04)

0.06 (0.04)

0.09 (0.04)

0.01 (0.05)

  

TDR

GIN

AdaDetect

0.10 (0.20)

0.04 (0.10)

0.42 (0.42)

0.00 (0.00)

 

CAD

0.04 (0.12)

0.03 (0.09)

0.87 (0.20)

0.02 (0.03)

DiffPool

AdaDetect

0.04 (0.12)

0.03 (0.06)

0.62 (0.42)

0.00 (0.00)

 

CAD

0.00 (0.01)

0.01 (0.04)

0.17 (0.24)

0.00 (0.00)

DGCNN

AdaDetect

0.27 (0.26)

0.15 (0.12)

0.95 (0.11)

0.01 (0.02)

 

CAD

0.10 (0.17)

0.05 (0.11)

0.27 (0.26)

0.00 (0.01)

WL

AdaDetect

0.22 (0.18)

0.12 (0.12)

0.89 (0.07)

0.01 (0.03)

 

CAD

0.29 (0.10)

0.15 (0.10)

0.49 (0.01)

0.00 (0.00)

  1. The optimal values are shown in bold