Skip to main content

Table 1 Performance on the AD-AbAg database

From: Prediction of antibody-antigen interaction based on backbone aware with invariant point attention

Method

\(\hbox {AUROC}^{a}\)

\(\hbox {AUPRC}^{a}\)

\(\hbox {Precision}^{a,b}\)

\(\hbox {Recall}^{a,b}\)

\(\hbox {Specificity}^{a,b}\)

F1 \(\hbox {score}^{a,b}\)

AbAgIPA-Paddle

0.721

0.781

0.810

0.555

0.865

0.654

AbAgIPA-Twins

0.701

0.770

0.7560

0.561

0.821

0.643

\(\hbox {SGPPI-Paddle}^{c}\)

0.683

0.705

0.653

0.564

0.700

0.603

\(\hbox {SGPPI-Twins}^{c}\)

0.659

0.681

0.737

0.423

0.790

0.473

AbAgInterPre

0.694

0.739

0.666

0.619

0.686

0.640

  1. \(^{a}\)All metrics shown in the table are averages of 5-fold cross-validation;\(^{b}\)We use a decision boundary of 0.5 to determine TP(True Positive), FP(False Positive), TN(True Negative) and FN(False Negative); \(^{c}\)SGPPI-Twins are SGPPI’s primitive structure, the GCN network layer corresponding to the two inputs is parameter shared, and SGPPI-paddle is the GCN network layer corresponding to the two inputs side by side, and the parameters are unshared