Skip to main content

Table 2 Comparison LDAGM with other classifiers, the results of LDAGM are optimal, as indicated in bold

From: LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks

Method

AUC

AUPR

MCC

ACC

Precision

Recall

F1-Score

SVM

0.930±0.0065

0.920±0.0136

0.862±0.0087

0.916±0.0063

0.924±0.0125

0.783±0.0036

0.856±0.0045

RF

0.864±0.0145

0.853±0.0365

0.804±0.0754

0.884±0.0452

0.836±0.0478

0.840±0.0136

0.812±0.0175

GAN

0.949±0.0025

0.952±0.0069

0.906±0.0078

0.891±0.0085

0.939±0.0069

0.848±0.0074

0.899±0.0085

XGBoost

0.934±0.0074

0.924±0.0051

0.883±0.0062

0.905±0.0084

0.925±0.0093

0.825±0.0065

0.901±0.0071

LDAGM

0.983±0.0058

0.988±0.0047

0.930±0.0233

0.941±0.0122

0.983±0.0106

0.925±0.023

0.939±0.0131

  1. The bold number is the highest value of each column and its clarifes the superiority of our mode