Skip to main content

Table 1 Listing of all data-driven models explored in the manuscript.

From: Data-driven discovery of chemotactic migration of bacteria via coordinate-invariant machine learning

Model

Surrogate function

Known fields

Known RHSs

Output

Algorithm

Black box for 2 PDEs

\(f_{GP}, h_{GP}\)

b(rt), c(rt)

\(b_t, c_t\)

GPR

 

\(f_{NN}, h_{NN}\)

b(rt), c(rt)

\(b_t, c_t\)

ANN

Black box for 1 PDE

\(f_{GP}\)

b(rt), c(rt)

\(c_t\)

\(b_t\)

GPR

 

\(f_{NN}\)

b(rt), c(rt)

\(c_t\)

\(b_t\)

ANN

Black box, delays

\(f^{partial}_{GP}\)

b(rt), history

\(b(r, t+\Delta t)\)

GPR

 

\(f^{partial}_{NN}\)

b(rt), history

\(b(r, t+\Delta t)\)

ANN

Gray box

\(g_{GP}\)

b(rt), c(rt)

\(c_t\)

\(b_t-D_b\Delta b\)

GPR

 

\(g_{NN}\)

b(rt), c(rt)

\(c_t\)

\(b_t-D_b\Delta b\)

ANN

Gray box, delays

\(g^{partial}_{GP}\)

b(rt), history

\(b(r, t+\Delta t)-D_b\Delta b(r,t)\)

GPR

 

\(g^{partial}_{NN}\)

b(rt), history

\(b(r, t+\Delta t)-D_b\Delta b(r,t)\)

ANN

  1. fh denote surrogate functions for the entire RHS of the \(b-\) and \(c-\)PDE respectively, while g denotes a surrogate for the chemotactic term. Subscripts “GPR” and “NN” denote Gaussian Process Regression and Artificial Neural Network respectively. \(\Delta t\) denotes the time delay used in all models with partial information. Only the models in rows indexed 2,3,4,6,8  will be presented in detail in the following sections; the rest are included in the Supplementary Information