Skip to main content

Table 4 Results of the feature ablation study in CrossFeat

From: Crossfeat: a transformer-based cross-feature learning model for predicting drug side effect frequency

Method

Binary classification

Regression

AUROC

AUPRC

RMSE

MAE

\(\hbox {Drug}_{\textrm{Fingerprint}}\)

0.802 ± 0.00

0.806 ± 0.01

0.88 ± 0.08

0.65 ± 0.04

\(\hbox {Drug}_{\textrm{Mol2vec}}\)

0.802 ± 0.00

0.812 ± 0.01

0.86 ± 0.02

0.64 ± 0.02

Side-\(\hbox {Effect}_{\textrm{Semantic}}\)

0.797 ± 0.01

0.805 ± 0.02

0.88 ± 0.06

0.67 ± 0.02

Side-\(\hbox {Effect}_{\textrm{Word}}\)

0.804 ± 0.01

0.811 ± 0.01

0.85 ± 0.05

0.65 ± 0.03