Skip to main content

Table 3 Benchmarking various algorithmic approaches

From: Predicting stroke occurrences: a stacked machine learning approach with feature selection and data preprocessing

Model

TP

FP

FN

TN

Acc. (%)

Pre. (%)

Rec. (%)

F1-score (%)

KNN

814

170

157

827

83.3

82.7

83.8

83.2

NN

726

248

207

787

76.8

74.5

77.8

76.1

RF

735

237

218

718

76.8

75.6

77.1

76.3

SVM-L

494

487

475

512

51.1

50.3

50.9

50.6

SVM-R

651

275

219

823

74.8

70.3

74.8

72.4

ADA

747

235

168

836

80.4

76.1

81.6

78.7

MNB

630

309

226

803

72.8

67.0

73.6

70.1

Proposed method

942

20

3

1004

98.6

97.9

99.6

98.7

  1. TP, true posistive; FP, false positive; FN, false negative; TN, true negative; Acc, accuracy; Pre, precision; Rec, recall