Skip to main content

Table 6 Results on link prediction tasks

From: Can large language models understand molecules?

Dataset

BioSnap

DrugBank

# Nodes

1320

1690

# Edges

41577

190609

Average node degree

64.087

224.38

Models

AUROC

AUPR

AUROC

AUPR

Morgan FP

0.871 ± 0.00

0.847 ± 0.00

0.876 ± 0.00

0.855 ± 0.00

BERT

0.621 ± 0.02

0.563 ± 0.08

0.660 ± 0.02

0.639 ± 0.01

ChemBERTa

0.527 ± 0.02

0.547 ± 0.08

0.519 ± 0.02

0.457 ± 0.01

MolFormer-XL

0.550 ± 0.02

0.701 ± 0.08

0.611 ± 0.02

0.644 ± 0.01

GPT

0.856 ± 0.06

0.812 ± 0.08

0.836 ± 0.05

0.748 ± 0.09

LLaMA

0.921 ± 0.00

0.884 ± 0.02

0.927 ± 0.00

0.872 ± 0.01

LLaMA2

0.941 ± 0.00

0.902 ± 0.02

0.961 ± 0.00

0.933 ± 0.01

  1. The reported performance metrics are the mean and standard deviation of the AUROC and AUPR, calculated across the 10 runs. The Best Performance is Highlighted in Bold