From: Using sensitivity analyses to understand bistable system behavior
 | Solution 1 | Solution 2 | Solution 3 |
---|---|---|---|
Steady States (x, y) | (0,0) | (2, 0.5) | (6, 4.5) |
Jacobian \(\textbf{J}\) | \(\left( \begin{matrix} -1.5 &{} 16\\ 0 &{} -8 \end{matrix}\right) \) | \(\left( \begin{matrix} -6 &{} 14\\ 4 &{} -8 \end{matrix}\right) \) | \(\left( \begin{matrix} -18 &{} 10\\ 12 &{} -8 \end{matrix}\right) \) |
Eigenvalues \((\lambda _1, \lambda _2)\) | \((-1.5,-8)\) | \((-14.5,0.54)\) | \((-25.04,-0.95)\) |
Stability Property | Stable | Saddle node | Stable |